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’ INTRODUCTION

A major obstacle to overcome during the treatment of solid
tumors is resistance to therapy.1,2 One factor contributing to this
problem is the physical tumor microenvironment (pO2 and pH)
and its impact on therapeutic efficacy.3�5 Hypoxia (Figure 1)
and high glycolytic activity are common characteristics of solid
tumors leading to increased production and secretion of lactate
and H+ to the extracellular space. The culmination of elevated
glycolysis coupled with poor vascular perfusion is an acidic
extracellular space.6�8 Noninvasive measurements have shown
that pHe ranges from 6.5 to 6.9 while intracellular pH, pHi,
remains neutral to alkaline7,9 creating an acid-outside pH gra-
dient typically not observed in normal tissue.10

Tumor cells exposed to these harsh intratumoral physical
conditions undergo many changes, and it is becoming increas-
ingly evident that acidosis plays an important role in the somatic
evolution and progression of cancer from preinvasive to malig-
nant disease.6,11�13 Early studies by Morita et al. described the
clastogenic properties of low pHe on mammalian cell lines in
vitro.14�17 Other early studies by LeBoeuf observed that low
pHe inhibits gap junctions, which are classified as tumor supp-
ressors.18 These alterations may contribute to the observa-
tion that low pHe can promote the transformation of normal
cells to a neoplastic phenotype.19 Additional studies show that a
low extracellular pH increases the expression of vascular en-
dothelial growth factor (VEGF), carbonic anhydrase, interlukin-
8, cathepsin B, and matrix metalloproteinases-2 and -9, all of
which are associated with increased tumor cell survival, migration
and invasion.20�23

A low extracellular pH also contributes to drug resistance both
in vitro and in vivo. The acid-outside pH gradient generated
between intra- and extracellular space affects the distribution and
uptake of select weak base chemotherapeutic drugs resulting in
physiological drug resistance.24�27 Tumor cells adapted to low
pHe in vitro harbor p53 mutations and have elevated activity of
p-glycoprotein, both of which can contribute to drug
resistance.28�30 In addition, chronically adapted low pHe cells
are radio-insensitive in vitro.31

This review will focus on drug resistance and the extracellular
acidic microenvironment. It will begin by discussing “ion trap-
ping”, a phenomenon that describes how low pHe negatively
impacts the uptake of weak base chemotherapeutics followed by
the use of strategies to alkalinize tumor pH in order to increase
therapeutic efficacy. We will conclude this review with a section
on cellular adaptation and responses to acidosis that may
contribute to drug resistance.

’ LOW pH AND PHYSIOLOGICAL DRUG RESISTANCE

The cell membrane functions as a semipermeable struc-
ture between the intra- and extracellular microenvironment.
Small, uncharged molecules readily diffuse across the phospho-
lipid portions of membranes while charged species tend to
remain impermeable. Because of this characteristic, the acidic
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extracellular space of solid tumors creates a physiological barrier
for the cellular uptake of weak bases.3 This phenomenon is
termed “ion trapping” (Figure 2). Ion trapping occurs when there
is a large permeability difference between ionized (impermeant)
and nonionized (permeant) species of a drug. On each side of the
membrane, an equilibrium between ionized and nonionized
forms of the drug is established according to a Henderson�
Hasselbach relationship. For a weak base, the ratio of ionized
BH+ to nonionized B is 10�(pH�pK). Thus, if the pKa is 8.3,

the ratio will be∼10:1 at pH 7.3 (typical for pHi) and∼100:1 at
a pH of 6.3 (lower range of pHe). As the nonionized form of the
drug equidistributes on both sides of themembrane, more drug is
sequestered in the lower pH of the extracellular environment,
reducing therapeutic efficacy.32

Most chemotherapeutic drugs have ionizable species under
physiological conditions that may enhance or hinder their ability
to cross membranes. Uptake and efficacy of weak base che-
motherapeutics with a dissociation constant of 7.5�9.5 such as
anthracyclines, anthraquinones, and vinca alkaloids are reduced
by the acid-outside pH gradient of solid tumors, as shown by in
vitro and in vivo studies.10,24�27,33

Figure 3A illustrates in vitro plasmalemmal pH gradients in
MCF-7 cells as a function of the extracellular pH. MCF-7 cells
cultured at a pHe of 6.8 and 7.4 had a pHi of 7.05 and 7.2
respectively generating both acid-outside and alkaline-outside
plasmalemmal pH gradients. Doxorubicin is an anthracycline
consisting of an ionizable primary amine with a basic pKa of 8.3.
Doxorubicin has been previously shown to undergo ion
trapping3 in acidic conditions and is a substrate for p-glycoprotein,
a drug exporter with enhanced activity in acidic environments.34

Intracellular accumulation of 14C-labeled doxorubicin was great-
er in MCF-7 cells cultured at a pHe of 7.4 (∼168 pmol/mg/
protein�1) than that of cells cultured at a pHe of 6.8 (65 pmol/
mg/protein�1) increasing in vitro toxicity (Figure 3B,C). Table 1
is a list of additional weak base and weak acid chemotherapeutics
and their respective pKas plus their LD50 against MCF-7 cells
cultured at a pHe of 6.8 or 7.4.25

Conversely, if weak bases are protonated and trapped extra-
cellularly in acidic environments, then uptake of weak acidic
chemotherapeutics such as chlorambucil should be enhanced
under similar acid-outside pH conditions. Chlorambucil, with a

Figure 1. The tumor microenvironment. This is an immunohistochemical example of intratumoral diffusion limited hypoxia of MDA-MB-231
mammary fat pad tumors using pimonidazole to detect hypoxic tissue. Pimonidazole is a nitromidazole that binds to thiol groups at oxygen levels below
1%. The H&E stain identifies a vascular cross section surrounded by a population of well-oxygenated cells. Diffusion limited hypoxia (pimonidazole
stain) surrounding patent vasculature is common in solid tumors where tumor growth extends beyond the oxygen diffusion limit (∼200 μM). Due to
significant changes in metabolism, hypoxic regions (pimonidazole positive) are most likely acidic generating an acid-outside pH gradient.

Figure 2. The “Ion trapping” phenomenon. This example assumes
the extracellular H+ concentration is greater than the intracellular H+

concentration (i.e., pHe < pHi). Uncharged ionizable weak bases
[WeakBase] such as doxorubicin freely permeate membranes. However,
in acidic solutions, weak bases are ionized becoming positively charged
protonated species [WeakBase H+] reducing cell permeability. There-
fore, positively charged weak bases become trapped in extracellular
compartments reducing cellular uptake and efficacy. Weak acids tend
to concentrate in more alkaline environments such as intracellular
compartments. Adapted with permission from ref 3. Copyright 2000
Elsevier Ltd.
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dissociation constant of 5.78, readily crosses the plasma mem-
brane of cells cultured at a low pHe. In vivo experimental acidosis
following a bolus injection of glucose resulted in a 2.3-fold
increase in the efficacy of chlorambucil compared to weak base
doxorubicin.24 Intratumoral alkalization with sodium bicarbo-
nate (NaHCO3) greatly reduced chlorambucil efficacy both in in
vitro and in vivo studies (to be discussed in the next section).
Friberg and Moan showed similar effects with the photosensitiz-
ing agent hematoporphyrin IX (HpIX). Uptake of HpIX was
increased in T-47D cells cultured under acidic conditions
compared to neutral conditions35 implying that the “ion trap-
ping” phenomenon must be taken into consideration while
designing and implementing all therapeutic strategies in addition
to chemotherapy.

Melphalan is a weak acid chemotherapeutic compound with
pKa values of 1.83 and 9.13 at pH 7.436 and is approved clinically
for treatment of multiple myeloma and ovarian cancer.37 Con-
forming with the “ion trapping” hypothesis, increased cellular
uptake of melphalan is observed in cells cultured at low pHe38,39

and the antitumoral effect of melphalan is enhanced by low pHe
across many tumor xenograft models.40�42 Melphalan is one
such compound that may benefit from a therapeutic approach

that takes the “ion trapping” hypothesis into consideration.
Melphalan is used in isolated limb perfusion and infusion models
both preclinically and clinically for the treatment of melanoma.43,44

Isolation of the limb temporarily halts blood circulation to the
extremity resulting in local hypoxia and acidosis. Delivery of
melphalan directly into the isolated limbs dramatically increases
the compound's efficacy, prolonging patient survival and reducing
the number of limb amputees.45�51 These results suggest that
inclusion of “ion trapping” in further studies may prove to be a
viable therapeutic strategy.

Paclitaxel is commonly used in the clinic to treat early stage
breast cancer and has been used in vitro to induce cell death in
MCF-7 cells.52,53 Paclitaxel is not ionizable, and drug distribution
should not be affected by extracellular pH. The effect of pH on
paclitaxel efficacy determined in vitro (Figure 4) showed no
significant differences in toxicity in MCF-7 cells cultured at a
pHe of 6.8 or 7.4.26 In addition, paclitaxel treatment in combina-
tion with sodium bicarbonate did not alter tumor growth rates,
suggesting the increased therapeutic benefit stemming from

Figure 3. Increased doxorubicin uptake and efficacy under alkaline conditions. (A) Intracellular pH measurements and (B) doxorubicin uptake were
determined as a function of extracellular medium pH in MCF-7 cells. (C) The effect of doxorubicin toxicity on MCF-7 cells in vitro as a function of
extracellular medium pH. Adapted with permission from ref 25. Copyright 2003 Elsevier Ltd.

Table 1. Summary of Weak Base and Weak Acid
Chemotherapeutic pKa Values

25 and LD50 against MCF-7
Cells Cultured at a pHe of 6.8 and 7.425,26

LD50

pKa pHe 6.8 pHe 7.4

Weak Bases

doxorubicin 8.30 312 ( 29 (nM) 176 ( 33 (nM)

daunorubicin 8.30 384 ( 61 (nM) 158 ( 37 (nM)

mitoxantrone 7.6�8.2 703 ( 62 (nM) 262 ( 46 (nM)

Weak Acids

chlorambucil 5.8 14.3 ( 3 (μM) 22 ( 4 (μM)

5-fluorouracil 7.6 29 ( 13 (μM) 27 ( 8 (μM)

Figure 4. Extracellular pH has no effect on paclitaxel cytotoxicity. The
effect of paclitaxel cytotoxicity as a function of extracellular medium pH.
Adapted with permission from ref 26. Copyright 2003 Elsevier Inc.
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extracellular alkalinization by sodium bicarbonate may be drug
selective. These results confirm that not all chemotherapeutics
are ionizable under physiological conditions and are therefore
not candidates for “ion trapping”.26

’EXPERIMENTAL ALKALIZATION OF pHe

Experimental and mathematical models demonstrate that it is
possible to raise extracellular pH of tumors using systemic
buffers.54�57 An in silico tumor model developed by Silva et al.
determined that the buffer best suited to raise intratumoral pH
should have a pKa of∼7.0.57 As stated by Silva, candidate buffers
cholamine chloride (pKa, 7.1), BES (pKa, 7.15), TES (pKa, 7.5),
and HEPES (pKa, 7.55) are available, but the effects of these
buffers in vivo need additional testing.58 Sodium bicarbonate is a
physiological buffer with a pKa of 6.1 that regulates the pH in
blood and tissue.59 Chronic administration of sodium bicarbo-
nate increased the pHe of MCF-7 mammary fat pad tumors with
little detectable effect on pHi (Figure 5A). These values were
determined using 31P MR spectra to measure the chemical shift
of exogenously added 3-APP (pHe) and endogenous inorganic
phosphates (pHi). Notice that the pHe and pHi differed between
two sets of control tumors grouped by size, but an acid-outside
membrane gradient was present in both sets.33

Although it affected the pHe, treatment with sodium bicarbo-
nate alone had no effect on growth of primary tumors. However,
combining sodium bicarbonate with doxorubicin reduced tumor
volume and delayed growth compared to doxorubicin alone,
suggesting that alkalinization by sodium bicarbonate may en-
hance doxorubicin uptake (Figure 5B). These data support the in
vitro data indicating that MCF-7 cells cultured at a pHe of 7.4
have increased doxorubicin uptake and sensitivity to treatment
(Figure 3B,C). Even more striking results have been observed
using mitoxantrone,60,61 and a generalized model has been
developed that uses the pH-dependent partition coefficients to
predict the severity of ion trapping in drug distribution.25,26

Epirubicin, also a weak base with a pKa of 8.1,62 is an
anthracycline that inhibits DNA and RNA synthesis. Epirubicin
is used clinically to treat breast cancer and has been investigated
as a treatment for superficial bladder cancer via intravesical
delivery.63,64 In vitro studies show that epirubicin exhibits in-
creased efficacy against human bladder cancer cells65,66 and
Chinese hamster ovary cells cultured under alkaline conditions.67

Clinically, issues may arise during intravesical delivery of epir-
ubicin directly into the bladder since the patient urine may be
acidic, potentially decreasing cellular uptake of epirubicin. Buf-
fering the pH of the bladder or alkalinizing the pH of epirubicin
prior to delivery may have a beneficial impact on the therapeutic
efficacy;65,66 however, this has yet to be investigated.

Maintaining an alkaline intracellular environment is critical for
cell survival. Cells maintain an intracellular alkaline environment
by transporting intracellular H+ to the extracellular space via a
number of mechanisms, including vacuolar-ATPase, Na+/H+

exchanger (e.g.NHE-1), carbonic anhydrases (e.g. CA-IX) and anion
exchangers.68�72 Due to elevated glycolytic activity of tumor
cells, dependence on these mechanisms for survival is critical.
Vacuolar-ATPase located at the plasma membrane through
membrane recycling has elevated expression and activity in
metastatic tumors.73 Na+/H+ exchange expression correlates
with hypoxic/necrotic regions of an in vitro tumor spheroid.12

Carbonic anhydrases reversibly convert carbon dioxide and water
to bicarbonate and a proton. Inhibition of CA-IX reduces tumor
acidity and pH heterogeneity.74,75 The end result is acidification
of the extracellular space. Proton pump inhibitors (PPIs) are a
selective class of vacuolar-ATPase inhibitors that are commonly
used to treat patients with gastric disease.76 PPIs reduce the
outwardflux ofH+ raising the pHof the extracellular environment.76

Some efficacy of PPIs has been observed in solid tumor models
and in vitro against melanoma cells. Luciani et al. utilized PPI
omeprazole to reduce v-H+ -ATPase activity and to break down
the acid-outside physiological barrier.77 The result was alkaliza-
tion of both extracellular pH and intracellular vacuoles. They
showed that pretreatment with PPIs increased the uptake and

Figure 5. Sodium bicarbonate significantly increases extracellular pH of tumors in vivo. (A) Intracellular pH (pHi) and extracellular pH (pHe)
measurements of untreated MCF-7 tumors (A and B) of varying sizes. Notice that pHe is acidic irrespective of tumor size. Administration of sodium
bicarbonate significantly alkalinizes the extracellular pH. Tumor pHe and pHi were measured by 31P MRS. (B) In vivo MCF-7 tumor volume
measurements from mice treated with 200 mM sodium bicarbonate (cyan), 2.0 mg/kg doxorubicin (red), or coadministration of 200 mM sodium
bicarbonate and 2.0 mg/kg doxorubicin (purple). Administration of doxorubicin alone reduced tumor volume, but a greater reduction of tumor size was
observed with coadministration of sodium bicarbonate. Adapted with permission from ref 33. Copyright 1999 Cancer Research Campaign.
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efficacy of compounds that were under normal tumor conditions
excluded from intracellular compartments.77

’CELLULAR ADAPTATIONS TO LOW pHe

The tumor physical microenvironment is composed of low
oxygen tension and high acidity. These conditions lead exposed
cells to physiological changes as well as to selective pressures.
Physiological changes include changes in gene expression,78 apop-
totic potential,31 autophagy,79 and drug resistance.3 Because acidity
may cause p53-dependent apoptosis, selection of p53 mutant
cells may occur.30 This loss of apoptotic potential and other
adaptive changes are likely driven by microenvironment-induced
genomic instability and inhibition of DNA repair.15,80,81

Drug resistance is a major adaptive change in aggressive
cancers and is a confounding factor during treatment. This
may arise due to the chronic exposure to an acidic microenvir-
onment. A major mechanism of drug resistance involves the
activity or expression of the multidrug transporter, p-glycoprotein
(pGP).28,29 pGP, encoded by theMDR1 gene, actively pumps cyto-
toxins, such as doxorubicin and paclitaxel, out of the cell.82

Although mRNA levels are not changed during acidosis, the
activity of pGP is increased, and this effect is amplified by
hypoxia.28 The localization of pGP is also crucial, and has been
reported to change after induction of selective pressures.83 The
changes in pGP activity during acidosis are accompanied by
changes in intracellular pH, which may decrease the effective-
ness of chemotherapeutics,84,85 or the capacity of drugs to be
pumped out of the cell.86

’CONCLUSIONS

We described mechanisms by which low pHe contributes to
chemotherapy resistance. Since maintained acidification of the
extracellular space is a hallmark of solid tumors, novel methods
are needed to overcome low pHe drug resistance in order to
improve therapeutic efficacy of current and future compounds.
One approach is to alkalinize the microenvironment through the
use of systemic buffers. While sodium bicarbonate successfully
increased the efficacy of weak base chemotherapies in vivo, a
systemic buffer with a pKa of ∼7.0 is predicted to be more
effective. The opposite approach is to take advantage of low pHe
through increased use and design of weak acid compounds.Many
groups have developed low pH activated micelle systems that are
designed to enter the core of solid tumors followed by the release
of toxins within the acidic microenvironment; however, addi-
tional in vivo studies are required to determine their effecti-
veness.87 Although periods of hypoxia can be transient,88,89

acidification of the extracellular microenvironment likely remains
constant due to aerobic glycolysis. Because acidosis provides a
modality for selection and for drug resistance, new techniques
and pharmacological agents must be developed to address tumor
acidification.
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